
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:17463  | https://doi.org/10.1038/s41598-023-44354-6

www.nature.com/scientificreports

The effects of social presence 
on cooperative trust 
with algorithms
Baptist Liefooghe *, Ebelien Min  & Henk Aarts 

Algorithms support many processes in modern society. Research using trust games frequently 
reports that people are less inclined to cooperate when believed to play against an algorithm. Trust 
is, however, malleable by contextual factors and social presence can increase the willingness to 
collaborate. We investigated whether situating cooperation with an algorithm in the presence of 
another person increases cooperative trust. Three groups of participants played a trust game against a 
pre-programmed algorithm in an online webhosted experiment. The first group was told they played 
against another person who was present online. The second group was told they played against 
an algorithm. The third group was told they played against an algorithm while another person was 
present online. More cooperative responses were observed in the first group compared to the second 
group. A difference in cooperation that replicates previous findings. In addition, cooperative trust 
dropped more over the course of the trust game when participants interacted with an algorithm in 
the absence another person compared to the other two groups. This latter finding suggests that social 
presence can mitigate distrust in interacting with an algorithm. We discuss the cognitive mechanisms 
that can mediate this effect.

Algorithms support many processes in today’s society, such as entertainment, service industry, administration, 
governance, transportation and health care1–3. The prolific use of algorithms raises the question how do we 
interact and cooperate with algorithms and, more generally, with artificial intelligence. A key determinant 
of this interaction is trust. Whereas trust depends on relatively objective features of an algorithm such as its 
performance, automation and transparency (for reviews, see4–8,8,9), trust in algorithms is also driven by the 
context that shapes the attitudes and beliefs that people hold towards algorithms10–14. Research on the strategic 
interaction or cooperation between humans and algorithms, such as in the context of economic decisions and 
social dilemma’s, frequently reports that humans are less cooperative and trustful when cooperating with an 
algorithm compared to another human15–21. In the present study, we investigate the role of a social context in 
changing trust when cooperating with an algorithm and test whether situating cooperation with an algorithm 
in the presence of another person promotes cooperative trust.

Cooperative behavior in a trust situation comprises four elements22: (a) Placing trust by a trustor allows a 
trustee to honor or abuse trust; (b) A trustor regrets placing trust if trust is abused, but benefits from honored 
trust; (c) A trustor voluntarily places resources in the hands of the trustee without formal safeguards and (d) 
There is a time-lag between placement of trust and the action of the trustee. Cooperative behavior is typically 
investigated in Trust Games, which offer a game-theoretic representation of a transaction that closely resembles 
the aforementioned criteria, see also23–25. A seminal example of a Trust Game is the prisoner’s dilemma (e.g.,26). 
In this game, a participant can decide to testify against an opponent (Defect) or remain silent (Cooperate). 
Remaining silent only pays off when the opponent also does so and being betrayed by the opponent while 
confessing leads to a higher penalty. Although some exceptions have been reported19,20, a common finding in 
different types of trust games is that less cooperative responses are made when the opponent is (or is believed 
to be) an algorithm compared to when the opponent is (or is believed to be) a real human15–21. Furthermore, 
prior commitments to cooperate in a trust game are more often broken off when playing against an algorithm17.

The reduced cooperative behavior that is observed when playing against an algorithm compared to a 
human opponent seems unaffected by the actual behavior of the algorithm. For instance16, conducted an online 
experiment in which participants played an iterated prisoner’s dilemma game. Participants were either led to 
believe they were coupled to another human player or an algorithm. On the very first round of the prisoners’ 
dilemma, the perceived opponent did not affect cooperation and the difference between a human and an 
algorithm opponent increased in the immediately following rounds. Importantly, over the course of the game 
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the algorithm adapted to the responses of the participant such that it maximized cooperation. However, the mere 
knowledge that the opponent was an algorithm impeded a player’s willingness to cooperate.

Similarly18, conducted a lab-based experiment in which participants either introduced themselves face-to-
face to a purported human opponent and then moved to their respective computers. When participants were 
led to believe they played against an algorithm, participants immediately sat in front of an assigned computer 
and engaged in the task. In both contexts, an algorithm was programmed as an opponent that could be highly 
cooperative or not. However, again more cooperative responses were made towards a human opponent, and this 
was not affected by the frequency of cooperative responses made by that opponent.

Cooperative behavior, however, is complex and can be influenced in a variety of ways that are not directly 
related to the nature of the cooperants. For instance, the social framing of the context in which the cooperation 
takes place influences the willingness to cooperate (e.g.,27,28). Eiser and Bhavnani29 observed more cooperative 
behavior in a Prisoners’ dilemma when the situation is framed as an international negotiation than when it is 
framed as a business transaction (see also30–32). Furthermore, cooperation can also be influenced by (un)intended 
social features of an opponent, such as emotional expression (see34,35 for reviews). Gallo and Dale35 reported that 
cooperation in the prisoners’ dilemma could be increased when the experimenter varied her tone of voice and 
facial expressions while delivering feedback during the game.

Previous research suggests that social context is also an important moderator in Human-AI interactions 
(see36 for a review). In line with the Social Presence Theory (e.g.,37), numerous interventions have been shown 
to facilitate pleasure and encourage people to experience interactions with computers as being social by adding 
physical features, such as pictures of faces, text, personalized greetings, or human audio and video38–41. For 
instance, the co-presence of an opponent in a computer game increases positive affect (e.g.,42) and creating the 
illusion of online social presence increases trust during online shopping43. Apparently, placing computers and 
algorithms in a social context changes the way people treat and respond to them.

Taken together, the findings discussed above indicate that trust when interacting with algorithms could be 
modulated by changing the social setting in which the interaction takes place. Here, we offer a proof of principle 
of this idea by testing whether cooperative trust towards an algorithm can be modulated when the trust game 
is embedded in a social context43,44. To this end, we conceptually replicated and extended the design used by 
Miwa and Terai18. Because the experiment was ran during the COVID pandemic, we used a set-up in which a 
virtual lab was used by means of the Microsoft Teams environment in which participants played a Trust Game. 
In the Other-Person-as-Opponent condition, participants were led to believe that they played the trust game 
against another person that was present online during the experiment and to which they were introduced to 
face-to-face by means of a webcam. In the Algorithm-as-Opponent condition participants were informed that 
they played against an algorithm during the experiment and no other person was present online in the game 
context. Finally, in the Algorithm-as-Opponent-in-Social-Context condition participants were told that they 
played against an algorithm, but another person was present online during the experiment to which they were 
also introduced to face-to-face.

We used an iterative trust game that matches the definition of22 and additionally enables to investigate 
separately the two roles that can be endorsed in a trust situation, namely trustor or trustee. During this iterative 
trust game45,46, a participant decides to trust an opponent or not on a first round. This decision is followed by 
a message indicating that the opponent honors or abuses the trust granted by the participant. As can be seen 
in Fig. 1, all choices made by the players lead to different rewards or losses. In the next game round, the roles 
are reversed, and the opponent granted trust (or not) and the player could decide to honor this trust or not. 
Participants thus made two cooperative responses in succession. First, they indicate whether they trust the 
opponent and want to play one round of the game (trust granting). Second, they decide either to abuse or honor 
the trust given by the opponent (trust honoring). This additional response makes it possible to further investigate 
the observation that players are more inclined to break prior commitments or less honor trust that was granted 
to them by an algorithm17. Furthermore, the decision to grant and to honor trust in a game round was repeated 
across 64 game rounds. Earlier findings suggest that the bias against algorithms increases over time16. As such, 
we could test whether we could replicate such increase in bias and if social presence can mitigate this effect. In 
addition, the frequency of abusive responses emitted by the opponent could either be high (75%) or low (25%) 
in two separate game sessions. As such, we could again test whether biases towards an opponent were affected 
by the actual behavior of the opponent16,18.

Figure 1.   Structure and pay-off scheme of the trust game.
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Building on previous research, we expected that participants would show more cooperative responses in the 
Other-Person-as-Opponent condition than in the Algorithm-as-Opponent condition (see also18,20–24). In addition, 
this difference may increase over the course of the game16 and remain unaffected by the frequency of abusive 
responses made by the opponent18. The novel condition in the present study is the Algorithm-as-Opponent-in-
Social-Context condition in which cooperation takes place in a social context, while disclosing that the opponent 
is an algorithm. As such, we could estimate the influence of social presence on trust in the cooperation with an 
algorithm. On the one hand, if the distrust against an algorithm is robust as was suggested before16, the influence 
of social presence may be minimal. As such, the pattern of cooperative responses (frequency, stability over the 
course of the game), should be similar to the pattern of cooperative responses in the Algorithm-as-Opponent 
condition because in both conditions the purported opponent is an algorithm. On the other hand, if in line 
with Social Presence Theory, the influence of the social context is substantial, then the pattern of cooperative 
responses (frequency, stability over the course of the game) in the Algorithm-as-Opponent-in-Social-Context 
should be similar to the pattern in the Other-Person-as-Opponent condition. Note that previous research used 
the prisoners’ dilemma, while our task differs and required two explicit responses: trust granting and trust 
honoring. As this distinction is new, we made no specific predictions about how our different conditions could 
affect these specific responses.

Method
Participants
Hundred-and-one participants were enrolled in the experiment either voluntarily or for course credits. 
Participants were recruited from the social network of the second author and by means of Sona Systems 
(https://​www.​sona-​syste​ms.​com/) and randomly assigned to one of the three between-subjects conditions of 
the experiment: the Other-Person-as-Opponent condition (n = 32), the Algorithm-as-Opponent condition 
(n = 34), and the Algorithm-as-Opponent-in-Social-Context condition (n = 35). In view of the elaborateness of 
the experimental sessions we opted for a convenience sample. As mentioned in the Introduction, the present 
study was conceptually similar to the study of18, as it used a between-subjects comparison of conditions in which 
participants were introduced face-to-face with an opponent or other person. The main difference was that we 
used an online setting with a webcam instead of physical interactions because we ran our study during the 
COVID pandemic. Miwa and Terai18 used samples of around 20 participants in each condition. The average effect 
size of the difference in cooperation when the purported opponent was a human or an algorithm was a Cohens’ 
d of 0.60. This is above a medium size effect of d = 0.547. However, because our design also included a within-
subjects manipulation, namely the frequency of abusive responses of the opponent, a minimum of 32 participants 
per group was set, which offers a power of 0.8 for detecting a medium size effect of d = 0.547, in each condition.

Due to an error, the age of the participants was not registered and the gender of the sample was only partially 
available, which consisted at least of 28 men and 40 women. The experimental protocol was approved by the 
Ethical Review Board of the Faculty of Social and Behavioral Sciences of Utrecht University (21-2049). The 
experiment was performed in accordance with relevant guidelines/regulations in line with the Declaration of 
Helsinki. Informed consent was obtained for all participants.

Trust game
The trust game was programmed and webhosted in Gorilla48. In each round of the trust game, a player first 
decided to trust an opponent or not, who in turn could honor or abuse this trust. As can be seen in Fig. 1, all 
the choices made by the players lead to different rewards or losses. On the next round, the roles were reversed, 
and the opponent granted trust (or not) and the player could decide to honor this trust or not. With this second 
response we further investigated the observation that players are more inclined to break prior commitments or 
less honor trust that was granted to them by an algorithm17. The frequency of cooperative responses emitted by 
the algorithm could either be high (75%) or low (25%) in two separate game sessions. Note that, these frequencies 
were determined at the level of a session and on each round of the game incertitude remained to whether a 
participant would be abused or not by the opponent. As such, we could investigate how possible biases towards 
the algorithm were affected by the cooperativeness of the algorithm16,18.

At the start of the first round of the game, participants were presented with the question: “Do you trust your 
opponent?” in the middle of the screen. They responded to this question by means of the ‘v’ (yes) and ‘n’ (no) keys 
of their keyboard. If participant pressed ‘no’, they proceeded to the end of the round. If participants pressed ‘yes’, 
their trust could either be honored or abused by the opponent. In the first case, the message “The opponent honors 
your trust! You both win 20 points!” appeared in the center of the screen and in the second case the message: “The 
opponent abuses your trust! You win 0 points! The opponent wins 40 points!”. Participants could then press the 
spacebar to proceed. At the end of the round, the total number of points earned so far was mentioned: “You have 
XXX points. The opponent has XXX points.” The number of points earned had no consequence for the participants.

The opponent started the next round and the participants either received the message “The opponent does 
not trust you!” or “The opponent trusts you! Do you honor the opponent’s trust?”. In the first case, the participants 
proceeded to the end of the round by pressing the spacebar. In the second case, participants responded by 
pressing ‘yes’ or ‘no’, before proceeding to the end of the round, at which point a summary of the points earned so 
far was presented. The next round was again opened by the participant. Participants thus alternated systematically 
between the role of trustor and trustee. The dependent variables were the frequency of trust-granting responses 
and the frequency of task-honoring responses.

https://www.sona-systems.com/
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Procedure
In the Other-Person-as-Opponent and Algorithm-as-Opponent-in-Social-Context condition participants were 
invited to a video call in Microsoft Teams with the experimenter (female, mid-twenties, Caucasian). The video 
call started with a short welcome word introducing the experimenter and the experiment. Following this welcome 
word, a link was sent via the chat function of Teams. By clicking this link, they could start the experiment 
on their own laptop or PC. Participant were asked to maximize the screen of the Gorilla environment, such 
that they could no longer see the Teams environment and the experimenter. Participants then received more 
instructions about the trust game and their opponent. In each condition the experimenter was introduced 
(name, e-mail). In the Other-Person-as-Opponent condition participants were informed to play a trust game 
against the experimenter. In the Algorithm-as-Opponent-in-Social-Context condition, participants were told 
that they would play against an algorithm that was programmed by the experimenter, who would also be present 
during the experiment. In the Algorithm-as-Opponent condition, the introduction text was identical as in the 
Algorithm-as-Opponent-in-Social-Context condition. However, participants were directed to the experiment via 
a link in the Sona recruitment system and no Teams environment or video call was used. In all three conditions, 
the instructions were followed by an informed consent, whereafter the trust game started.

Following the instructions, the trust game started. Two blocks of 64 rounds were presented: the 75%-trust-
honoring block and the 25%-trust-honoring block. In each block, participants systematically alternated between 
the roles of trustor (i.e., granting trust) and trustee (i.e., honoring trust). They started always as trustor in the 
first round. The same algorithm was used in each condition. In the 75%-trust-honoring block, the algorithm 
was programmed to make trust honoring responses on 75% of the rounds. In the 25%-trust-honoring block, 
the algorithm was programmed to make trust honoring responses on 25% of the rounds. In both blocks, these 
responses were randomly dispersed per participant. When the player was the trustee, the algorithm granted trust 
in 75% of the rounds in each block, again randomly dispersed per participant.

Data processing and analyses
Data were processed an analyzed in R. The number of cooperative responses (trust honoring, trust granting) 
were considered as main dependent variables. General linear mixed models were used as implemented in the 
package ‘lme4′49. The Block Type (75% vs. 25% trust honoring) and the Condition (Other Person-as-Opponent, 
Algorithm-as-Opponent, Algorithm-as-Opponent-in-Social-Context) were fixed effects and effect coded.

The Game Round was added as a numerical predictor (64 rounds). After visual inspection of the data, we 
noticed a steeper drop in cooperative responses in the first rounds of the game. In order to account for this 
non-linear trend, round numbers were first log-transformed and subsequently centered50. A random intercept 
was estimated per participant. Finally, individual differences in the effect of Block Type and Game Round, as 
well as their interaction were also included in the model. We thus used the maximal random-effect structure51. 
The reported p-values for the fixed effects are based on a Type III ANOVA using a χ2-distribution. Estimated 
marginal means and follow-up z-ratio tests were calculated with the package ‘emmeans’52. Multiple comparisons 
were corrected for Type I error inflation by using Tukey’s method.

Results
Trust granting
The main effect of Condition Type was significant, χ2(2) = 7.74, p = 0.02. The probability of trust granting 
was higher in the Other-Person-as-Opponent condition (M = 0.43; SE = 0.06) compared to the Algorithm-as-
Opponent condition (M = 0.23; SE = 0.04), z = 2.75, p = 0.02. The probability of trust granting in the Algorithm-as-
Opponent-in-Social-Context condition (M = 0.30; SE = 0.05) did not differ significantly from the Other-Person-
as-Opponent condition, z = 1.79, p = 0.17, and the Algorithm-as-Opponent condition, z < 1. The main effect of 
Block Type was significant, χ2(2) = 43.69, p < 0.001. The probability of trust granting in the 75%-trust-honoring 
condition (M = 0.42; SE = 0.04) was higher than in the 25%-trust-honoring condition (M = 0.22; SE = 0.02). Finally, 
the probability of trust granting decreased with the Game Round, χ2(1) = 84.65, p < 0.001.

The interaction between Condition Type and the Game Round was significant, χ2(2) = 8.25, p = 0.02 (see 
Fig. 2). These and further interactions with Game Round were decomposed by comparing the slopes by which 
trust granting decreased as a function of the Game Round in the different conditions of interest. This decrease 
was significantly steeper in the Algorithm-as-Opponent condition compared to the Other-Person-as-Opponent 
condition, z = 2.65, p = 0.02, and not significantly steeper compared to the Algorithm-as-Opponent-in-Social-
Context condition, z = 2.29, p = 0.06. The difference in decrease between the Other-Person-as-Opponent and the 
Algorithm-as-Opponent-in-Social-Context condition was not significant, z < 1.

The interaction between Block Type and the Game Round was significant, χ2(2) = 22.35, p < 0.001 (see Fig. 3). 
The decrease in trust granting was significantly steeper in the 25%-trust-honoring condition compared to the 
75%-trust-honoring condition. Finally, the interaction between Block Type and Condition, χ2(2) < 1, and the 
three-way interaction, χ2(2) = 2.09, p = 0.36, were not significant.

Trust honoring
The main effect of Condition Type was not significant, χ2(2) = 3.21, p = 0.20: Other-Person-as-Opponent 
condition: M = 0.34, SE = 0.06; Algorithm-as-Opponent condition: M = 0.20, SE = 0.05; Algorithm-as-Opponent-
in-Social-Context condition: M = 0.23, SE = 0.05. The main effect of Block Type was significant, χ2(2) = 31.47, 
p < 0.001. The probability of trust honoring in the 75%-trust-honoring condition (M = 0.35; SE = 0.05) was 
higher than in the 25%-trust-honoring condition (M = 0.18; SE = 0.02). Finally, the probability of trust honoring 
decreased with the Game Round, χ2(1) = 62.83, p < 0.001.
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The interaction between Condition Type and Game Round was significant, χ2(2) = 10.38, p = 0.006 (see Fig. 4). 
The decrease in trust honoring was significantly steeper in the Algorithm-as-Opponent condition compared to 
the Other-Person-as-Opponent condition, z = 3.07, p = 0.006, and compared to the Algorithm-as-Opponent-in-
Social-Context condition, z = 2.39, p = 0.045. The difference in slopes between the Other-Person-as-Opponent 
and the Algorithm-as-Opponent-in-Social-Context condition was not significant, z < 1. The interaction between 
Game Round and Block Type, χ2(2) = 1.49, p = 0.22, and between Block Type and Opponent, χ2(2) = 2.74, p = 0.05 
were both not significant. The three-way interaction was also not significant, χ2(2) < 1.

Additional analyses
The above analyses suggest that social presence mitigates the decrease in cooperative responses over the course of 
the trust game. However, contrasts testing these trends were sometimes near the conventional 0.05 significance 
criterion and when decomposing the main effect of Condition Type for the trust-granting responses, only the 
difference between the Algorithm-as-Opponent condition and the Other-Person-as-Opponent condition was 

Figure 2.   Probability of trust granting as a function of opponent and game round.

Figure 3.   Probability of trust granting as a function of block type.
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significant. Our findings may thus be limited by a lack of power resulting from the convenience sample we used. 
We therefore present three additional sets of analysis to investigate how likely our analyses can lead to correct 
inferences (see also53 for a related approach). Each analysis aims to increase the robustness of our findings. We 
only highlight the relevant effects. Full analyses and corresponding scripts were added to the supplementary 
materials.

Combining both types of responses in the same analysis
Trust granting and trust honoring are two types of cooperative responses, the increase of which indicate that a 
participant is more willing to cooperate and trust the opponent. As such both measures can be combined, leading 
to more observations per participant when focusing on the effects of interest, which increases the power of the 
test (see also54). When entering both dependent variables in the same analysis and adding Response Type as an 
independent variable to our model, the main effect of Condition Type was significant, χ2(2) = 6.10, p = 0.047. 
However, the difference in cooperative responses between the Algorithm-as-Opponent condition compared to 
the Other-Person-as-Opponent condition was not significant, z < 1. The interaction between Condition Type 
and Opponent was significant, χ2(2) = 15.81, p < 0.0001. The decrease in the probability of a cooperative response 
was significantly steeper in the Algorithm-as-Opponent condition compared to the Other-Person-as-Opponent 
condition, z = 3.49, p = 0.006, and compared to the Algorithm-as-Opponent-in-Social-Context condition, z = 2.63, 
p = 0.002.

Simplifying the random structure of the model
The mixed linear effects models in our main analyses used a maximal random-effect structure51, which can lead 
to a significant loss in power55,56. Accordingly, we refitted the models of our main analyses by only estimating 
random intercepts. For the trust-granting responses, the main effect of Condition Type was significant, χ2

(2) = 7.75, p = 0.02. However, the difference in cooperative responses between the Algorithm-as-Opponent 
condition compared to the Other-Person-as-Opponent condition was not significant, z < 1. The interaction 
between Condition Type and Game Round was significant, χ2(2) = 25.14, p < 0.001. The decrease in trust granting 
was significantly steeper in the Algorithm-as-Opponent condition compared to the Other-Person-as-Opponent 
condition, z = 4.68, p = 0.001, and compared to the Algorithm-as-Opponent-in-Social-Context condition, z = 3.93, 
p < 0.001. For the trust-honoring responses, the main effect of Condition Type was not significant, χ2(2) = 3.11, 
p = 0.21. The interaction between Condition Type and Game Round was significant, χ2(2) = 8.66, p = 0.003. The 
decrease in trust honoring was significantly steeper in the Algorithm-as-Opponent condition compared to 
the Other-Person-as-Opponent condition, z = 5.11, p < 0.001, and compared to the Algorithm-as-Opponent-in-
Social-Context condition, z = 4.49, p < 0.001.

Centered treatment contrasts
To target our research question more directly, treatment contrasts can also be used in which the Algorithm-
as-Opponent condition is considered as the base level. Centered treatment contrasts were assigned to the 
categorical predictors55,56 and the maximum random structure was again used51. For the trust-granting 
responses, the contrast between the Algorithm-as-Opponent condition and the Other-Person-as-Opponent 
condition was significant, z = 2.75, p = 0.006. The contrast between the Algorithm-as-Opponent condition and the 

Figure 4.   Probability of trust honoring as a function of opponent and game round.
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Other-Person-as-Opponent-in-Social-Context condition was not significant, z = 1.00, p = 0.32. The decrease in 
trust granting was significantly steeper in the Algorithm-as-Opponent condition compared to the Other-Person-
as-Opponent condition, z = 2.71, p = 0.006, and compared to the Algorithm-as-Opponent-in-Social-Context 
condition, z = 2.26, p = 0.02. For the trust-honoring responses, the contrast between the Algorithm-as-Opponent 
condition and the Other-Person-as-Opponent condition and the contrast between the Algorithm-as-Opponent 
condition and the Other-Person-as-Opponent-in-Social-Context condition were not significant, z = 1.73, p = 0.08, 
and z < 1, respectively. The decrease in trust honoring was significantly steeper in the Algorithm-as-Opponent 
condition compared to the Other-Person-as-Opponent condition, z = 3.11, p = 0.002, and compared to the 
Algorithm-as-Opponent-in-Social-Context condition, z = 2.37, p = 0.02.

Discussion
The different analyses presented in the previous section can be summarized as follows. First, more trust was 
granted to the opponent when believed to play against a human as compared to when being aware to play against 
an algorithm in the absence of an online person during the experiment. This difference echoes previous research 
that observed reduced cooperative trust towards algorithms15–21. Second, when being aware to play against the 
algorithm and a person was present online, the probability of trust granting did not differ significantly from 
the other two conditions. Third, over the course of the game, the probability of trust granting decreased. This 
decrease was more pronounced when no online person was present, compared to the other two conditions. 
For the sake of transparency, we mention again that in our main analysis the relevant contrast between the 
decrease in trust granting in the Algorithm-as-Opponent and the Algorithm-as-Opponent-in-Social-Context 
condition was not significant, p = 0.06. In all other additional analyses, the contrast was significant following a 
0.05 criterion. Taken together, these findings suggest that social presence can mitigate the effect of distrust over 
the course of a trust game.

The probability of the trust-honoring response did not vary as a function of the purported opponent. The 
probability of trust honoring decreased over the course of the game. This decrease was more pronounced when 
no other online person was present, compared to the other two conditions. This finding also suggests that social 
presence can attenuate distrust towards an algorithm, albeit over the course of the game. Furthermore, the results 
of the trust-honoring responses are in line with previous research suggesting that participants are less inclined 
to honor trust granted by an algorithm17.

Our findings are in line with previous demonstrations in social cognition and behavior, showing that 
cooperation and trust between humans are malleable by the social context (e.g.,27,28,30–34,44). The present findings 
add to this literature by emphasizing the importance of social context in Human-AI interactions, and specifically 
the role of social presence in cooperative trust towards an algorithm. Our findings corroborate with the work 
of43, which was inspired by the Social Presence Theory37, who observed that creating the illusion of online social 
presence increases trust during online shopping. Yet, we remain cautious in our conclusion: Our findings suggest 
that social presence counteracts the decrease in cooperation over the course of a trust game. This is different 
from saying that social presence actually ‘boosts’ cooperation.

Our demonstration is only a proof of principle and the social cognitive mechanisms underlying the effect of 
social presence on cooperative trust in AI need to be further refined. According to intention-based approaches 
of cooperation59, a key element of cooperation are the intentions that opponents attribute to one another. Such 
attribution of intentional states or mentalizing60 helps us explain the behavior of other agents by attributing 
to them mental states of various sorts: beliefs, desires, and so on. In the context of a trust game, player A may 
reciprocate the risky decision to trust made by player B because the decision of the player B signals the intention 
to trust player A (i.e., a reciprocal-trust relationship). Evidence of such intention-based reciprocity, typically, 
comes from studies observing more cooperative responses in situations in which an opponent’s action was chosen 
intentionally compared to the situation in which the opponent’s action was implemented by a random device or 
was the only option available61–63. Following this view, cooperation thus depends on adopting an “intentional 
stance”64 towards an opponent. Although algorithms are usually not considered in terms of agency, there is some 
evidence suggesting that trust in algorithmic applications (e.g., robots, intelligent navigation systems) depends 
on the degree to which these applications are perceived to be human or possess intentionality5,16.

Within the account addressed above, the online presence of another person may have installed a social 
context that caused participants to perceive the algorithm as more intentional. Such “social transference” effect 
is common in a social interaction context where people spontaneously infer traits, goals and abilities from the 
behavior of interaction partners65,66 and attribute them to others who are also involved in the interaction67,68. 
The mere knowledge that the algorithm was programmed by the person present during the game, may also have 
strengthened the perception of the algorithm being intentional as the person that was present online (see also69 
for higher social preferences for algorithms that are known to be related to a human).

Of course, alternative accounts need to be considered that can also explain the difference in trust when 
cooperating with a human or with an algorithm. For instance, human factors research suggests that people 
commonly expect algorithms to be more consistent than humans70. An algorithm could thus be expected to 
adapt to a lesser degree as an opponent (i.e., using a tit-for-tat strategy). A such, it may be assumed by a player 
that the algorithm will unlikely change strategy and retaliate when being less cooperative or even abuse the trust 
of that algorithm.

The difference in cooperation towards humans and algorithms may also follow from a more general feeling 
of algorithm aversion71, that is independent about one’s inferences about the workings of that algorithm 
(intentionality, consistency). For instance, it has been observed across different forecast domains that people 
often prefer to endorse forecasts of other humans rather than use algorithms, even when the latter are more 
accurate (e.g.,72–74). Such explanation fits with our observation that the difference in cooperation towards humans 
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and algorithms was not affected by the extent to which the algorithm produced cooperative responses. A finding 
which is in line with previous studies16,18. Interestingly, a recent study by Liefooghe et al.75 suggests that even 
at the early of stage of social impression formation people tend to distrust artificial intelligence. These authors 
presented pictures of real faces and noted that merely labelling these faces as being artificial resulted in these faces 
to be rated as less trustworthy. This finding suggests that distrust against algorithms in the context of strategic 
cooperation may result from a prejudice that precedes our actual experience with these algorithms.

In a similar vein, the effect of the presence of others on people’s social mind can also be explained without 
calling upon the social attribution of perceived intentionality. The presence of others has been linked to the 
phenomenon of the audience effect, which causes people to become more self-aware76,77 and to search for cues of 
approval or disapproval from others78,79. This effect has been reported in different ecological settings, including 
face-to-face interactions as well as online visible and invisible interactions. The enhanced self-focused attention 
leads to the consideration of social rules and norms and encourages people to change behavior when actions are 
incongruent with these norms. According to this notion, participants showed more trust towards the algorithm 
in the presence of the person who programmed it, because they considered this behavior in line with leading 
norms about cooperation in the social context at hand.

To conclude, we observed that people trust algorithms more when interacting with them in the presence 
of others. Although this finding was predicted on the basis of Social Presence Theory37, future research will 
need to pinpoint the cognitive mechanisms underlying this effect. At the same, our results indicate a functional 
relationship between social presence and trust, which can be used to develop future interventions, even if these 
cognitive mechanisms are still unclear (see80 for a similar point in applied psychology). The observation that 
cooperation towards an algorithm is to a certain degree affected by social presence and not by the behavior of 
the algorithm offers new insights about these mechanisms and spurs new research directions.

Data availability
Data and analysis scripts are available at https://​osf.​io/​2n7cx/.
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